Direct Proportionality

$$
y=3 x
$$

As x increases, y increases proportionally.
Y is directly proportional to x because when $x=0, y=0$.

x	$3 x$	y
1	3	3
2	6	6
3	9	9
4	12	12

1) IF you double X, ($X=1$ to $X=2$) by what factor does Y change? by 2 since Y changed from 3 to 6

$$
\text { Multiplicative Change Factors: X by__2_ Y by ___ } 2
$$

2) If you triple X, ($X=1$ to $X=3)$ by what factor does Y change?

Change Factors: X by
Y by \qquad
3) If you quadruple X, ($X=1$ to $X=4)$ by what factor does Y change?

Change Factors: X by _ Y by \qquad
4) For this Data, is Y proportional to X ? If so, by what factor? \qquad
This factor is called the constant of proportionality.
Hint: If you graph \qquad Y \qquad vs \qquad X \qquad , how can you obtain the proportionality constant
mathematically? Compute the \qquad of the line whose formula is $\Delta Y / \Delta X$.

KEY IDEA: 1,2, and 3 illustrate linear proportionality, as you change X, Y changes the same way. Do you realize that the "linear" equation is $Y=3 X$ where Y is on the vertical axis and X is on the horizontal axis? That's a straight line and straight lines are easy to analyze!

Squared Proportionality

| X | $Y=3 x^{2}$ | X^{2} | $Y=3 X^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 1 | 3 |
| 2 | 12 | 4 | 12 |
| 3 | 27 | 9 | 27 |
| 4 | 48 | 16 | 48 |
| 5 | 75 | 25 | 75 |
| 6 | 108 | 36 | 108 |
| 7 | 147 | 49 | 147 |
| | | | |

1) IF you double X, ($X=1$ to $X=2$), by what factor does Y change?

Multiplicative Change Factors: X by \qquad Y by \qquad
2) If you triple $X,(X=1$ to $X=3)$, by what factor does Y change?

Change Factors: X by \qquad Y by \qquad
3) If you increase $X^{2} 4$ times $\left(X^{2}=1\right.$ to $\left.X^{2}=4\right)$ by what factor does Y change?

Change Factors: X^{2} by \qquad Y by \qquad
4) If you increase $X^{2} 9 \operatorname{times}\left(X^{2}=1\right.$ to $\left.X^{2}=9\right)$ by what factor does Y change?

Change Factors: X^{2} by \qquad Y by \qquad
5) Which question set has the simpler pattern? Between questions 1 \& 2 or between questions 3 \& 4?
6) Based on the pattern, is Y proportional to X or is Y proportional to X^{2} ? Why?
7) Using your choice from question (6), what is the value of the proportionality constant?

Hint: If you graph \qquad vs \qquad , how can you obtain the constant mathematically?

KEY IDEA: Do you realize that the "linear" equation is $Y=3 X^{2}$ where Y is on the vertical axis and X^{2} is on the horizontal axis. That's how one obtains a straight line from a curvy line. Beautiful!

Inverse Proportionality

Fill Time(hr)

As Hose Area increases, Fill time decreases.

Side Opening Parabola

Filling the Swimming Pool			
Hose Area Opening(cm)	Fill Time (hours)	$1 /$ Hose Area $(\mathrm{cm})^{-2}$	Fill Time (hours)
3	72	0.3333	72
18	12	0.0556	12
33	7	0.0303	7
48	3.5	0.0159	3.5
63	2	0.0093	2
108			

1) As the Hose Area increases from $\mathbf{3} \mathbf{c m}^{2}$ to $\mathbf{1 8} \mathbf{c m}^{2}$, by what factor does the Fill Time change?

Multiplicative Change Factors: Hose Area by
\qquad 6 \qquad Fill Time by \qquad 1/6 \qquad
2) As the Hose Area increases from $\mathbf{3} \mathbf{c m}^{\mathbf{2}}$ to $\mathbf{4 8} \mathbf{c m}^{\mathbf{2}}$, by what factor does the Fill Time change?

Change Factors: Hose Area by \qquad Fill Time by \qquad
3) As the $1 /$ Hose Area decreases from $0.3333 \mathrm{~cm}^{-2}$ to $0.0556 \mathrm{~cm}^{-2}$, by what factor does the Fill Time change?

Change Factors: 1/Hose Area by \qquad Fill Time by \qquad
4) As the $1 /$ Hose Area decreases from $0.3333 \mathrm{~cm}^{-2}$ to $0.0208 \mathrm{~cm}^{-2}$, by what factor does the Fill Time change?

Change Factors: 1/Hose Area by \qquad Fill Time by \qquad
5) Which is the simpler pattern, between questions $1 \& 2$ or between questions $\mathbf{3} \& 4$?
6) Is Fill Time proportional to Hose Area or is Fill Time proportional to $1 /$ Hose Area?
7) If you graph \qquad vs \qquad , how can you obtain the constant mathematically?
8) Optional: Based on your answer to (6), what is the value of the constant of proportionality?

Optional: Write the "linear" equation for this relationship between Fill Time \& Hose Area:

Pendulum Period(T) vs Length(L)

$\mathrm{L}(\mathrm{cm})$	$\mathrm{T}(\mathrm{s})$	$\mathrm{L}(\mathrm{cm})$	$\mathrm{T}^{2}\left(\mathrm{~s}^{2}\right)$
1	2	1	4
5	4.47	5	19.98
10	6.32	10	39.94
20	8.90	20	79.21
40	12.6	40	158.8
80	17.9	80	320.4
120	21.9	120	480

1) As L changes by a factor of 5 from 1 cm to 5 cm, by what factor does T change?

Multiplicative Change Factors: L by \qquad T by \qquad
2)) As L changes by a factor of 5 from 1 cm to 5 cm , by what factor does T^{2} change?

Change Factors: L by \qquad T^{2} by \qquad
3) As L changes by a factor of 20 from 1 cm to 20 cm , by what factor does T change?

Change Factors: L by \qquad T by \qquad
4) As L changes by a factor of 20 from 1 cm to 20 cm , by what factor does T^{2} change?

Change Factors: L by

\qquad T^{2} by \qquad
5) Based on your answers to the questions above, is T proportional to L or is T^{2} proportional to L? Explain Why?
6) Based on your answer to (5), what is the value of the constant of proportionality?
7) If you graph \qquad vs \qquad , how can you obtain the constant mathematically?

Optional: Write the "linear" equation for this relationship between T \& L: \qquad

