Direct Proportionality

As x increases, y increases proportionally.

Y is directly proportional to x because when x = 0, y = 0.

K	3x	
•	3	***

y = 3x

2	6	6
3	9	9
4	12	12

1) IF you double X, (X = 1 to X = 2) by what factor does Y change? by 2 since Y changed from 3 to 6

Multiplicative Change Factors: X by __2__ Y by ___2___

2) If you triple X, (X = 1 to X = 3) by what factor does Y change?

Change Factors: X by _____ Y by ____

3) If you quadruple X, (X = 1 to X = 4) by what factor does Y change?

Change Factors: X by _____ Y by _____

4) For this Data, is Y proportional to X ? If so, by what factor?

This factor is called the constant of proportionality.

Hint: If you graph ___Y___ vs ____X___, how can you obtain the proportionality constant

mathematically? Compute the _____ of the line whose formula is $\Delta Y/\Delta X$.

KEY IDEA: 1,2, and 3 illustrate linear proportionality, as you change X, Y changes the same way.

Do you realize that the "linear" equation is Y = 3 X where Y is on the vertical axis and X is on the horizontal axis? That's a straight line and straight lines are easy to analyze!

Squared Proportionality

Y is proportional to the square of x.

х	Y = 3 x ²	X ²	$Y = 3 x^2$
1	3	1	3
2	12	4	12
3	27	9	27
4	48	16	48
5	75	25	75
6	108	36	108
7	147	49	147

I) II you double A, (A = 1 to A = 2), by what lactor does I change	by what factor does Y cha	hange?
---	---------------------------	--------

Multiplicative Change Factors: X by _____ Y by _____

2) If you triple X, (X = 1 to X = 3), by what factor does Y change?

Change Factors: X by _____ Y by _____

3) If you increase X^2 4 times ($X^2 = 1$ to $X^2 = 4$) by what factor does Y change?

Change Factors: X² by _____ Y by _____

4) If you increase X^2 9 times($X^2 = 1$ to $X^2 = 9$) by what factor does Y change?

Change Factors: X² by _____ Y by _____

5) Which question set has the simpler pattern? Between questions 1 & 2 or between questions 3 & 4?

6) Based on the pattern, is Y proportional to X or is Y proportional to X2? Why?

7) Using your choice from question (6), what is the value of the proportionality constant?

Hint: If you graph _____ vs _____, how can you obtain the constant mathematically?

KEY IDEA: Do you realize that the "linear" equation is $Y = 3 X^2$ where Y is on the vertical axis and X^2 is on the horizontal axis. That's how one obtains a straight line from a curvy line. Beautiful!

Inverse Proportionality

As Hose Area increases, Fill time decreases.

Side Opening Parabola

Filling the Swimming Pool			
Hose Area	Fill Time	1/Hose Area	Fill Time
Opening(cm) ²	(hours)	(cm) ⁻²	(hours)
3	72	0.3333	72
18	12	0.0556	12
33	7	0.0303	7
48	4.5	0.0208	4.5
63	3.5	0.0159	3.5
108	2	0.0093	2

1) As the Hose Area increases from 3 cm² to 18 cm², by what factor does the Fill Time change?
Multiplicative Change Factors: Hose Area by6 Fill Time by1/6
2) As the Hose Area increases from 3 cm² to 48 cm², by what factor does the Fill Time change?
Change Factors: Hose Area by Fill Time by
3) As the 1/Hose Area decreases from 0.3333 cm ⁻² to 0.0556 cm ⁻² , by what factor does the Fill Time change?
Change Factors: 1/Hose Area by Fill Time by
4) As the 1/Hose Area decreases from 0.3333 cm ⁻² to 0.0208 cm ⁻² , by what factor does the Fill Time change?
Change Factors: 1/Hose Area by Fill Time by
5) Which is the simpler pattern, between questions 1 & 2 or between questions 3 & 4?
6) Is Fill Time proportional to Hose Area or is Fill Time proportional to 1/Hose Area?
7) If you graph vs, how can you obtain the constant mathematically?
8) Optional: Based on your answer to (6), what is the value of the constant of proportionality?
Optional: Write the "linear" equation for this relationship between Fill Time & Hose Area:

Pendulum Period(T) vs Length(L)

L(cm)	T(s)	L(cm)	T ² (s ²)
1	2	1	4
5	4.47	5	19.98
10	6.32	10	39.94
20	8.90	20	79.21
40	12.6	40	158.8
80	17.9	80	320.4
120	21.9	120	480

1) As L changes by a factor of 5 from 1 cm to 5
cm, by what factor does T change?

Multiplicative	Change Factors: L	by	T by

2)) As L changes by a factor of 5 from 1 cm to 5 cm, by what factor does T² change?

Change Factors: L by _____ T² by _____

3) As L changes by a factor of 20 from 1 cm to 20 cm, by what factor does T change?

Change Factors: L by _____ T by _____

4) As L changes by a factor of 20 from 1 cm to 20 cm, by what factor does T² change?

Change Factors: L by _____ T² by _____

- 5) Based on your answers to the questions above, is T proportional to L or is T^2 proportional to L? Explain Why?
- 6) Based on your answer to (5), what is the value of the constant of proportionality?

7) If you graph _____ vs _____, how can you obtain the constant mathematically?

Optional: Write the "linear" equation for this relationship between T & L: